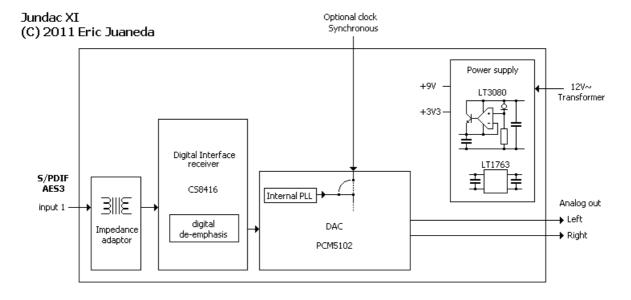
24bit 192KHz DIGITAL TO ANALOG CONVERTER WITH SELECTABLE DIGITAL FILTER

ASSEMBLY INSTRUCTIONS

November 2011 - Rev 1.0, © Eric Juaneda - www.junilabs.com

FEATURES


- ONE DIGITAL INPUT S/PDIF or AES3
- DIGITAL TRANSFORMER INPUT
- RCA, BNC or XLR input connector
- 24 BIT DAC
- ANALOG DIRECT DC COUPLING
- 32K TO 192KHz
- UPSAMPLE TO 352/384KHz
- SELECTABLE DIGITAL FILTER
 Apodising without pre-ringing or linear phase filter
- OPTIONAL EXTERNAL CLOCK to minimize jitter
- LOW NOISE REGULATORS LT1763. LT3080
- BOARD SIZE: 109mm X 109mm

DESCRIPTION

The JUNDAC XI is a 24bit 8x oversampling digital to analog converter. Incoming data is upsampled to 352.8KHz/384KHz. The board incorporates one S/PDIF, AES3 (AES/EBU) digital input and an optional external clock for very low jitter operation.

High speed ICs are of the 74LV family with symmetrical output impedance and balanced propagation delay. To minimize reflection, all digital lines are loaded and PCB is 75ohm compliant. To minimize noise in power supply, critical capacitors are Wima® FKP2 polypropylene film and foil, SCR® polypropylene capacitors, Elna® Silmic II and Nichicon® KG gold tune electrolytic capacitor.

All trademarks are the property of their respective owners.

SPECIFICATIONS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input sensitivity	RX1	0.15	0.5	3.3	Vp-p
	EXT CLOCK		3.3	5	Vp-p
Load input ⁽¹⁾	S/PDIF or AES	50	75	110	Ohm
Input signal	Resolution Sample frequency Number of channels Audio format	16 30	2 PCM	24 200	Bit KHz
Digital filter ⁽²⁾	Selectable Apodising Linear phase		IIR FIR		
Upsampling	Sampling frequency 44.1, 88.2, 176.4KHz 48, 96, 192KHz		352.8 384		KHz KHz
Additional clock for low jitter operation	Sampling frequency 44.1, 88.2, 176.4KHz 48, 96, 192KHz		22.5792 24.576		MHz MHz
Power supply requirements	44.1kHz 96kHz 192kHz	40	88 102 126	130	V~ mA mA mA
Analog output	Unbalanced		2.1		V_{RMS}
Led indicator ON Ext clock Error	Power ON External clock detected PLL unlock				
Switch Filter	Digital filter select				

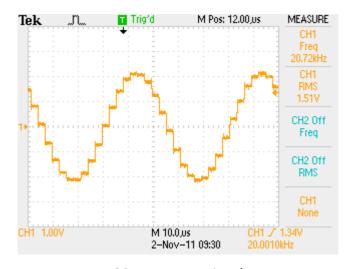
⁽¹⁾ Load input can be adjusted at any value. However, 75 ohm is recommended since PCB have 75 ohm impedance.


(2) See on page 3 for digital filter response.

DIGITAL FILTER RESPONSE

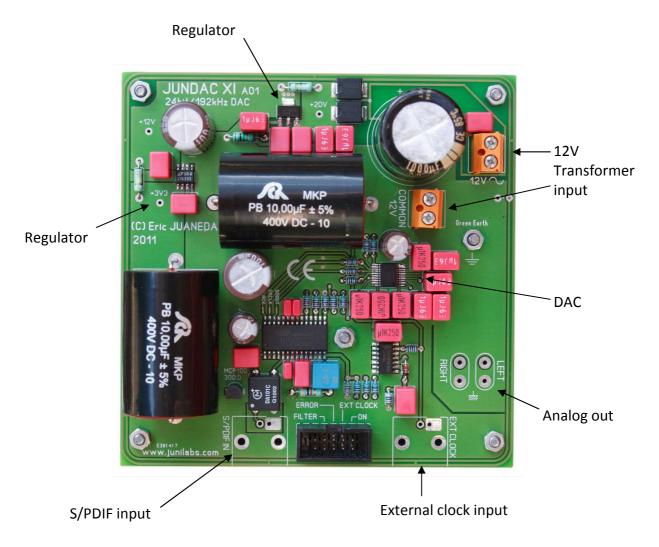
The Jundac XI integrates two digital filters. The filter response can be selected by switching FILTER pin to GND.

LEFT OPEN = Apodising filter CLOSED TO GND = Linear phase filter


Apodising filter

Linear phase filter

ANALOG OUTPUT


The Jundac XI integrates a DC coupled direct output. **No** low pass filter or capacitor are in the signal path.

The PCM5102 integrates an interesting advanced segment DAC modulator, there is few HF noise on output. The analog signal looks like an unfiltered standard R2R DAC. You can see each step computed by the digital filter.

20KHz output signal

BOARD OVERVIEW

MOUNTING AN INPUT CONNECTOR

You can put input connectors directly onto the PCB or on the chassis box linked by wire. You can use RCA, BNC or XLR. S/PDIF input transformer DA101C allows complete isolation from ground. The ground pin of the connector can be isolated from chassis, or directly linked to chassis. See figure 3 & 4 for wiring hot and cold pin.

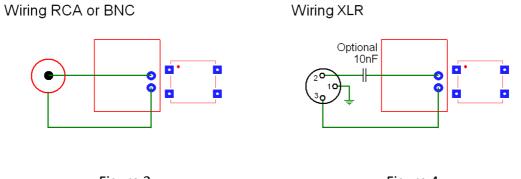


Figure 3 Figure 4

ANALOG OUTPUT CONNECTOR

The Jundac XI integrates a stereo analog outputs (LEFT and RIGHT). The ground is the bottom pin, see figure 6. Isolation of the RCA chassis is **not** recommended.

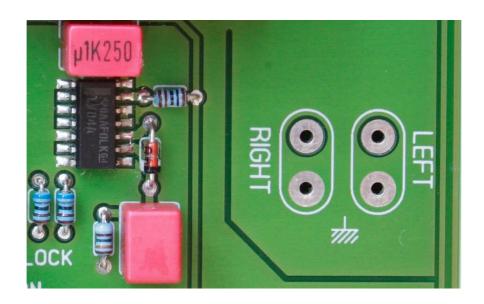


Figure 6

LED INDICATORS AND SWITCHES

The PCB integrates three LED indicators. Each LED are current limited by resistors. There is no risk of short circuit.

ON - yellow LED, is on when power is on.

EXT CLOCK - blue LED, is on when a signal is present on EXT CLOCK input.

ERROR - red LED, is on when CS8416 is unlocked.

LED connector wiring

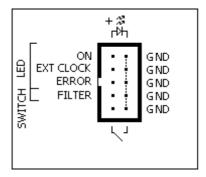


Figure 7

Wire number	Function		
1	ON		
2	GND		
3	EXT CLOCK		
4	GND		
5	ERROR		
6	GND		
7	FILTER		
8	GND		

CONNECTING TRANSFORMERS

The Jundac XI uses a single transformer for digital section and DAC. We recommend using toroidal transformer with the following values:

• 2 x 12V, 200VA to 300VA

Working with only 50VA results in cramped sound.

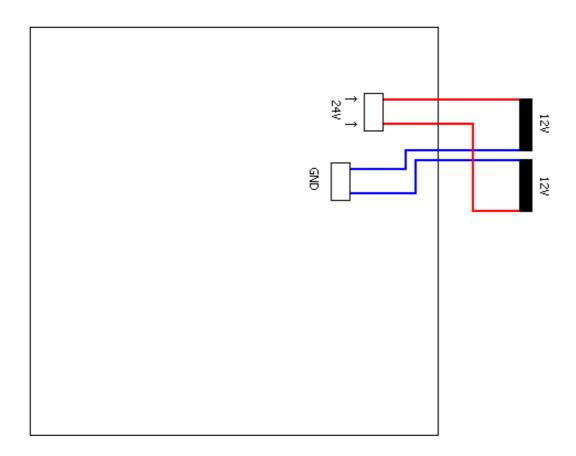
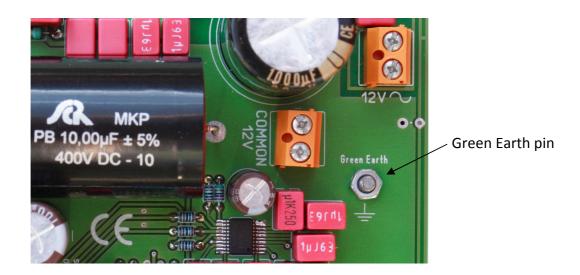



Figure 12 – connecting transformer

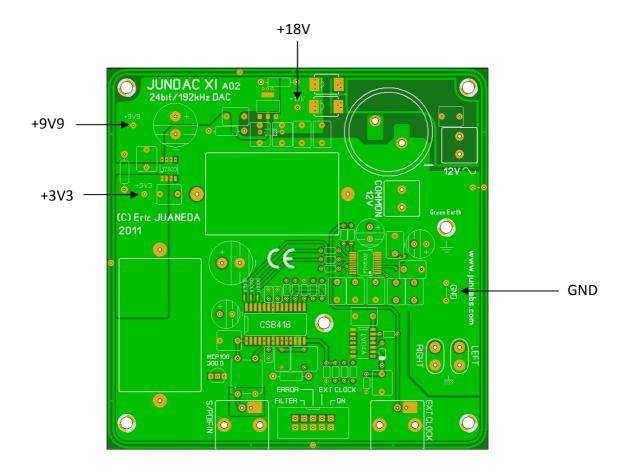
EARTH

To reach best performance it is recommended to connect chassis and PCB to safety Earth. A special point *Green Earth* is dedicated to connect a (second) strong cable to safety Earth or to virtual ground. Connecting this crucial point cleans residuals low frequencies coming from transformers and dramatically improves sonic performances.

For more information about Earth see: www.junilabs.com

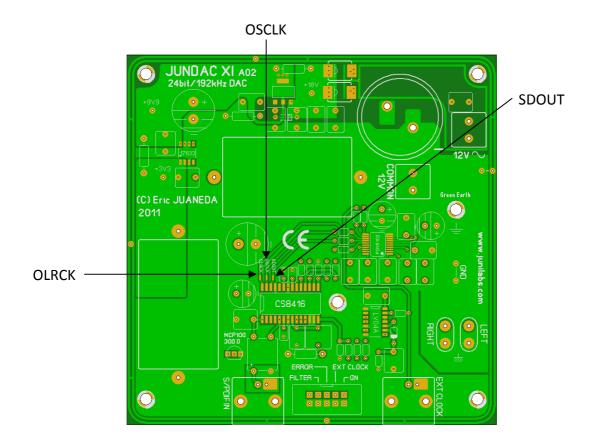
CHASSIS ENCLOSURE

Managing vibration is very important for audio devices. Chassis box must be assembled with great attention. A simplistic chassis box or no chassis at all will ruin audio qualities. Good managing is the only way to achieve the full music sonic attributes. An ideal box enclosure integrates rigid chassis box and internal damping with various materials.


You can find more information on managing vibration: http://tech.juaneda.com/en/articles/managingvibration.html

DIGITAL INPUT CABLE

If any 75 ohm cable is able to reproduce sound, only high quality cable allow to reach full music potential. Taking care about this component is not a waste of time or money.


TEST POINTS

The Jundac XI integrates test points to evaluate if it works within normal conditions.

Without input signal, CS8416 generates signal clock. Put an oscilloscope or frequency meter on the following test point.

OSCLK 175.4KHz 5.70μs
 OLRCK 2.74KHz 365μs
 RMCK 701.2KHz 1.425μs

WORKING WITH ADDITIONAL CLOCK

For very low jitter operation, you can use an additional clock.

A single clock to master source and DAC must be used. PCM5102 don't accepts any form of asynchronous clock.

This clock must be 22.5792MHz for the following sampling frequencies: 44.1KHz, 88.2KHz and 176.4KHz. The clock must be 24.576MHz for the following sampling frequencies: 48KHz, 96KHz and 192KHz.

Without additional clock, the PCM5102 internally generates master clock.

For more details show the PCM5102 datasheet from Texas Instruments.

Clock detect

PCM5102 auto switch to external clock when signal is detected on EXT CLOCK input.

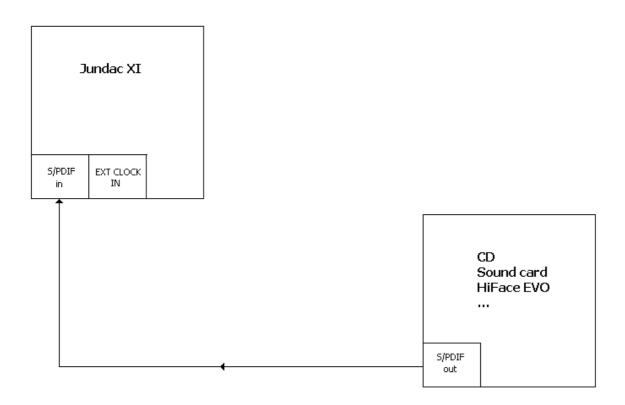


Figure 13 – working without external clock

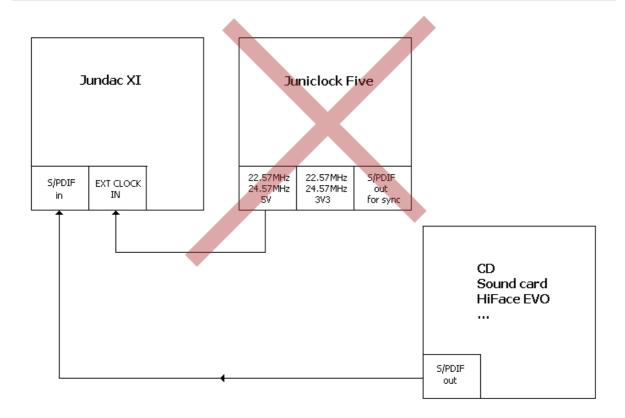


Figure 14 – Working with asynchronous clock is NOT possible

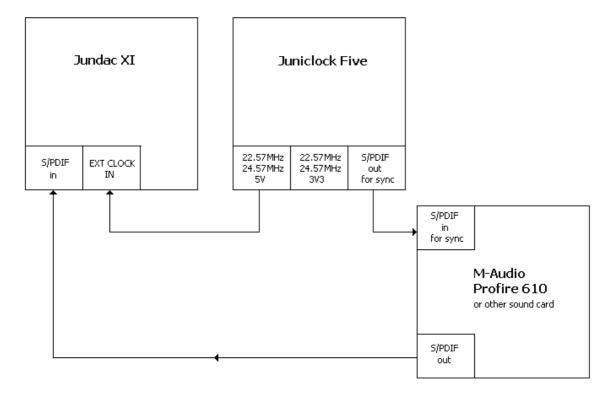


Figure 15 – Working with synchronous clock and slaved sound card

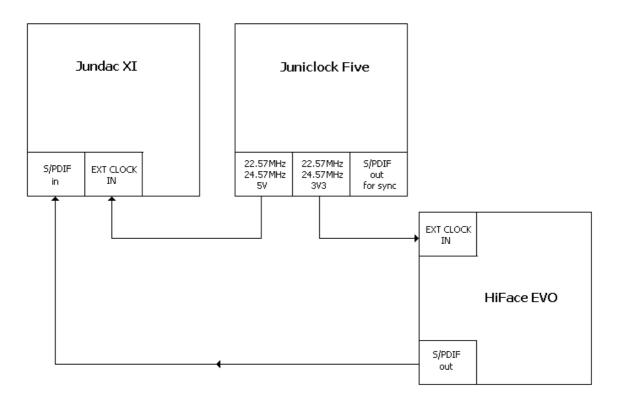


Figure 15 – Working with synchronous clock and HiFace EVO